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Abstract

Mesoscale structures (bubbles, clusters and streamers) in two-phase flows, especially in gas–solid flui-
dized beds significantly affect macroscopic hydrodynamic behavior. For industrial-scale fluidized beds, it is
typically impractical to simulate these structures directly due to the excessive resolution required. To model
effects of mesoscale structures, the ensemble phase averaging method is extended to derive macroscopic
averaged equations and their closures. It is found that added-mass and drag reduction effects due to
mesoscale structures play essential roles in the macroscopic equations of motion. Unlike the classical
added-mass force, which is proportional to the continuous fluid density, the mesoscale added-mass force is
proportional to the mixture density. Thus for gas–solid systems wherein the classical added-mass force is
almost always negligible, the mesoscale added-mass force is, in contrast, found to be quite important.
Mesoscale drag reduction results from the fact that, in a particle rich region, there is significantly less
relative velocity between particle and fluid phases than indicated by the macroscopic relative velocity.
Possible effects of the new force terms in the macroscopic equations are examined from a one-dimen-

sional simulation of a fluidized bed. Significant effects from the new terms on vertical pressure gradient and
particle volume fraction distributions are observed. Published by Elsevier Science Ltd.
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1. Introduction

It is now well known that in many two-phase flows, such as in a fluidized bed, particle dis-
tributions are not uniform, but rather quite inhomogeneous (Schnitzlein and Weinstein, 1988).
Clusters, streamers and bubbles exist in the flow (Grace and Tuot, 1979; Tsuji et al., 1998; Tsuo
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and Gidaspow, 1990; Gidaspow, 1994). Recent numerical solutions using averaged equations for
gas–solid two-phase flows performed by Sundaresan (2000) with fine grid resolution shows the
important effects of these mesoscale structures. It is shown that for a practical fluidized bed,
numerical simulations which ignore these mesoscale effects can be grossly inaccurate. This sug-
gests that the traditional two-phase flow averaged equation model cannot be used directly to
simulate these flows in typical practical engineering devices without using excessively fine grids.
On the other hand, some recent studies suggest that, when fine enough grid resolution is used, the
classical two-phase flow averaged equations do capture key features of two-phase flows with
reasonable quantitative accuracy. For example, Zhang and VanderHeyden (2001) simulated a
small fluidized bed using a set of highly simplified two-phase flow equations. Reasonable agree-
ment between the numerical results and experimental data was observed with high resolution.
Similar conclusions are also reached by Pan et al. (2000) in simulating bubbly flows. Comparison
of their numerical results with several sets of experimental data demonstrates that simple physical
models can capture key features of bubbly flows with high resolution.
The fact that the highly simplified two-phase flow model can produce reasonable numerical

predictions using high grid resolution implies that the effects of mesoscale structures can be as––or
even more––important than phase interactions at the particle scale. Indeed, Agrawal (2000) re-
ported that the contribution to effective stress from particle-scale interactions as modeled by
kinetic theory is negligible compared to the contributions from mesoscale interactions. Thus a
theoretical framework for two-phase flows which includes the effects of mesoscale structures is
essential for developing tools useful for practical engineering calculations.
One may attempt to derive an averaging framework which incorporates only a single average

over both particle-scale and mesoscale fluctuations. Although this is a logically valid approach, to
achieve this, the closure models constructed for this framework have to be able to describe physics
for both particle-scale and mesoscale phenomena. Such closure models are practically difficult to
obtain given that there are no generally accepted conceptual models for phase interactions that
apply to both the particle and the mesoscale.
An alternative framework employs a two-average approach wherein equations are first derived

from an average over the particle scale and then further averaged over the mesoscale. Given the
fact that mesoscale structures are usually large compared to particle size, a scale separation be-
tween the mesoscale interactions and particle scale interactions can be assumed and exploited.
Thus the two-step average framework has the advantage of conceptually splitting a difficult
multiscale closure modeling task into two sets of relatively easier ones involving separately the
particle scale and the mesoscale. In addition to the conceptual advantages, the two-average ap-
proach has a very practical advantage due to the success of the studies of Zhang and Vander-
Heyden (2001) and Pan et al. (2000). As mentioned above these researchers showed that equations
from a first average which only incorporate particle-scale closure models can be used to compute
two-phase flows in agreement with experiment as long as mesoscale phenomena are resolved by
the calculations. This, then, provides the macroscopic flow closure modeler with intricate and
complete numerical data sets from these high-resolution first-average simulations very much like
the direct numerical simulation data sets being used by single-phase turbulence modelers. It is
then very natural and self-consistent for the modeler using these data sets to then average the first-
average equations used in these high-resolution simulations to produce macroscopic two-phase
flow equations. This is the approach adopted in this paper.
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The starting point for our analysis is to use the first-average equations (with only particle-scale
closure) obtained by Zhang and Prosperetti (1994, 1997) using an ensemble phase-average tech-
nique. In this paper, we apply a second average using the Zhang–Prosperetti averaging technique
to the first-average equations. As we shall see, application of the second average reveals new terms
which are important to the modeling the macroscopic behavior of two-phase flows. The properties
of the new closure terms are then studied using the numerical results from highly resolved three-
dimensional simulations from Zhang and VanderHeyden (2001).
The concept of performing a second average is not new. If we take the point view of Irving and

Kirkwood (1950) the Navier–Stokes equations are the averaged equations derived from a sta-
tistical theory of molecular systems. Thus, the Navier–Stokes equations correspond to our av-
eraged equations obtained from the first average. The Reynolds averaged equations for turbulent
flow then would correspond to our second average in this paper. Similarly, for fluidized beds,
Dasgupta et al. (1994, 1997) performed a time average over a set of volume-averaged equations
for two-phase flows. Also, the second average method was applied by Besnard and Harlow (1988)
to examine the Reynolds stresses and energy cascade processes in turbulent two-phase flows. In
present paper, instead of investigating the behavior of Reynolds stress, we examine the correlation
between pressure gradient fluctuations and the fluctuations of the volume fraction.

2. Average over mesoscale

The averaged equations for two-phase flows have been derived by many researchers using
various averaging methods, such as the volume average (Anderson and Jackson, 1967), the time
average (Ishii, 1975), and the ensemble average (Batchelor, 1970; Drew, 1983). In this paper, we
shall use the ensemble phase average technique introduced by Zhang and Prosperetti (1994, 1997).
The tools developed in the ensemble phase average are extended to perform the second average
over the averaged equations for two-phase flows. One of the advantages of following the ensemble
phase average method introduced by Zhang and Prosperetti is that many of resulting closure
terms from the second average correspond to terms in the averaged equation obtained from the
first average; the relation between them will help us understand the physics associated with the
new terms introduced by the second average.
In absence of phase change, the averaged continuity equation for the continuous phase is

ohcqc
ot

þr � ðhcqcucÞ ¼ 0; ð1Þ

and for the disperse phase is

ohdqd
ot

þr � ðhdqdudÞ ¼ 0; ð2Þ

where subscripts c and d are for the continuous phase and the disperse phase, respectively. The
volume fraction for each phase is denoted by h, the density by q and the averaged velocity by u.
The momentum equations are

o

ot
ðhcqcucÞ þ r � ðhcqcucucÞ ¼ hcr � rc þr � ðhdLþ hcqcMcÞ � hdf þ hcqcg; ð3Þ
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o

ot
ðhdqdudÞ þ r � ðhdqdududÞ ¼ hdr � rc þr � ½hdðqdMd þ rcollÞ	 þ hdf þ hdqdg; ð4Þ

where is rc is the averaged stress in the continuous phase. The quantity L can be proved
(Prosperetti and Zhang, 1996) to be essentially the difference between averaged disperse phase
stress rd and the averaged continuous phase stress rc, which results from phase interactions at the
microscopic level. The quantity f is the phase interaction force. The quantitiesMc andMd are the
kinematic Reynolds stresses in the continuous and disperse phases resulting from fluctuations at
the particle scale. The quantity rcoll is the stress due to collision among particles in the flow. The
term g is the body force, such as the gravity. In the case of binary collisions rcoll, is often modeled
by kinetic theory disregarding effects of interstitial fluid. In the case of multi-particle collisions in
the presence of an interstitial fluid, Zhang and Rauenzahn (1997, 2000) proved that the dynamics
effect of interaction forces among particles can also be represented by a stress. In the case of a
dilute potential flow, f is the added-mass and L is related to the relative velocity between the two
phases (Zhang and Prosperetti, 1994). In a dilute Stokes flow, f is the Stokes drag and L is related
to the effective viscosity of the suspension (Zhang and Prosperetti, 1997). The purpose of this
paper, however, is not to examine these closure terms, but to study the effect of the mesoscale
terms found in the equations from the second average.
To achieve this, we now perform a second average to derive macroscopic equations. Let C be a

set of parameters uniquely determining the two-phase flow, and P ðC; tÞ be the probability density
associated with C at time t. The second ensemble average of a quantity f is defined as

f ðx; tÞ ¼
Z

f ðx;C; tÞPðC; tÞdC: ð5Þ

For a quantity f of phase i (i ¼ c or d), the second ensemble phase average is defined as

hf iiðx; tÞ ¼
hiðx; tÞf ðx; tÞ

hi

: ð6Þ

Application of the average (5) to both sides of continuity Eqs. (1) and (2) leads to

ohcqc
ot

þr � ðqchchucicÞ ¼ 0; ð7Þ

ohdqd
ot

þr � ðqdhdhudidÞ ¼ 0: ð8Þ

For simplicity, in this paper we assume that both of the phases are incompressible. Similarly,
averaging over the momentum equation for the disperse phase and adding and subtracting
hdr � hrcic, to the right-hand side, one finds

qd
ohdhudid

ot

�
þr � ðhdhudidhudidÞ

�
¼ hdr � hrcic þr � ½hdðqdhMdid þ qdMdm þ hrcollidÞ	

þ hdhfid þ hdfr þ hdqdg; ð9Þ
where

hdfr ¼ hdr � ðrc � hrcicÞ ¼ hdhr � ðrc � hrcicÞid; ð10Þ
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and Mdm is the kinematic Reynolds stress resulting from the second average

Mdm ¼ �hðud � hudidÞðud � hudidÞid: ð11Þ
The appearance of the Reynolds stress qdhdMdm is not unexpected. However, the appearance of

the force term fr is less familiar. We shall examine this new force.
Similar to (9) one can write the momentum equation for the continuous phase as

qc
ohchucic

ot

�
þr � hchucichucic

� ��
¼ hcr � hrcic þ hcr � rc � hrcic

� �
þr � hdhLid

�
þ hcqcMc

�
þr � hcqcMcm

� �
� hdhfid þ hcqcg; ð12Þ

where Mcm is the kinematic Reynolds stress resulting from the second average

Mcm ¼ �hðuc � hucicÞðuc � hucicÞic: ð13Þ
The second term on the right-hand side of (12) is similar to the mesoscale interfacial force hdfr

defined in (10). The volume fraction in this term is hc instead of hd as in (10). We now show that
the difference of these two terms is a divergence of a stress. First note that

hcr � ðrc � hrcicÞ ¼ ðrc � hrcicÞ � rhd ¼ r � ð�hhdLmÞ � �hhdfr; ð14Þ

where the first identity comes from differentiation by parts and definition (6) which yields
hcðrc � hrcicÞ ¼ 0, The second identity comes from definition (10) and by defining

Lm ¼ hrcid � hrcic: ð15Þ

This quantity is similar to L which is essentially the averaged stress difference inside and outside
particles (Prosperetti and Zhang, 1996). The quantity Lm, now, can be said to be the averaged
stress difference inside and outside clusters or other mesoscale structures.
The momentum equation can now be written as

qc
ohchucic

ot

�
þr � hchucichucic

� ��
¼ hcr � hrcic þr � �hhdðhLid

h
þ LmÞ þ �hhcqc hMcic

�
þMcm

�i
� �hhdhfid � �hhdfr þ �hhdqcg: ð16Þ

Similar to the situation for the interfacial force discussed above, the macroscopic momentum
equations for both phases contain the Reynolds stresses which have two parts, the microscopic
part and mesoscopic part.
In the averaged momentum Eqs. (9) and (16), the stress hrcic is the averaged stress weighted by

volume fraction hc of the continuous phases as defined in (6). Although this is a well-defined
quantity, it will often be more useful to work both experimentally and theoretically in terms of the
averaged stress of the mixture,

hrcim ¼ �hhdhrcid þ �hhchrcic ¼ hrcic þ �hhdLm: ð17Þ
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For this purpose, using (17) we can rewrite the momentum equations as

qd
o�hhdhudid

ot

"
þr � �hhdhudidhudid

	 
#
¼ �hhdr � hrcim þr � �hhd qdhMdid

�h
þ qdMdm þ hrcollid

�i

þ �hhdhfid þ �hhdfm þ hdqdg; ð18Þ

qc
o�hhchucic

ot

"
þr � �hhchucichucic

	 
#
¼ �hhcr � hrcim þr � �hhdhLid

h
þ �hhcqc hMcic

�
þMcm

�i
� �hhdhfid � �hhdfm þ �hhcqcg; ð19Þ

where

�hhdfm ¼ �hhdfr � �hhdr � ð�hhdLmÞ ¼ h0
dr � rc � hrcimð Þ: ð20Þ

The second identity of (20) comes from the definitions (10), (15) and the identity
hc rc � hrcic
� �

¼ 0.
The force fm appears in the momentum equations for both phases with opposite sign. It is thus

an exchange force. From its definition (20), it is clear that this force is the result of inhomogeneous
distributions of particle volume fraction and stress divergence. To understand the physical
meaning of the term fm, let us consider an idealized bubble in a fluidized bed. Inside the bubble,
the particle volume fraction is zero and outside the bubble particle volume fraction is a constant
�hhd. With this idealization we have a constant h0

d ¼ ��hhd. Let Vb be the volume of the bubble, S be
the surface of the bubble and n be the normal of the surface. The volume integralZ

Vb

h0
dr � rcð � hrcimÞdv ¼ ��hhd

Z
S

rcð � hrcimÞ � ndS ð21Þ

is the interfacial force acting on the bubble excluding the effect of mean stress divergence. Similar
to a single bubble in a pure fluid, the force fm represents the averaged interfacial force on the
bubble such as, for example, the averaged added-mass force, the drag and Basset history force.
Indeed, the interfacial force fd is defined similarly to Eq. (20) and is found to be the particle
added-mass force and particle drag (Zhang and Prosperetti 1994, 1996). In many cases of practical
interest, the Basset forces are negligible. For this reason, we shall not discuss this force further in
this paper. The difference between force fd and fm is that they represent interactions at different
length scales. The force fd represents particle-fluid interaction at the particle length scale, while the
force fm represents interactions at the mesoscale. With this we can identify this force fm as the
added-mass force and drag of mesoscale structures. In the case of gas–solid fluidized beds, in-
teractions at the mesoscopic length scale are dominated by inertia of the flow (Davidson, 1961;
Davidson et al., 1977). The drag component of fm is dominated, for example, by form drag.
Added-mass of particles is usually negligible since the gas density is small compared to the density
of the solid particles; added-mass of mesoscale structures is not negligible since the ‘‘fluid’’ sur-
rounding these structures in a fluidized bed is not a pure gas, but rather is a mixture of gas and
particles with density of the order of the mixture density, hcqc þ hdqd, which is usually significantly
larger than the gas density qc. This is especially true in the case of ‘‘bubbles’’ in a gas–solid bed
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wherein the dense ‘‘emulsion’’ surrounding bubble structures has a density of the order of the
solid particles themselves. The added-mass component of the interfacial force,

R
Sðrc�

hrcimÞ � ndS, can be written as �CbVbqeðab � aeÞ, where Cb is the added-mass coefficient for the
bubble, qe is the density of ‘‘emulsion’’ surrounding the bubble, ab is the acceleration of the bubble
and ae is the acceleration of the ‘‘emulsion’’. In a bubbling gas–solid fluidized bed, if we neglect
the drag component of the mesoscale force fm and the interactions among bubbles, the added-
mass force density can be written as

�hhdfm ¼ ��hhdhbCbqeðae � abÞ; ð22Þ
where hb is the bubble volume fraction in the fluidized bed.
Although, the example provided above is an idealized case, it demonstrates the concept of

mesoscale added-mass represented by the force term fm defined by (20) in general two-phase flows
with mesoscale structures.
Although considering interactions among mesoscale structures, such as interactions between

bubbles and surrounding emulsion, resembles the idea of using the buoyancy based on mixture
density in the momentum equation for two-phase flows, the appearance of the mesoscale force fm
is not a revival of the discussion among Clift et al. (1987), Fan et al. (1987), and Gibilaro et al.
(1987) about the used of mixture pressure in a two-phase flow. It is important to note that, as
defined in (20), the mesoscale force fm results from the inhomogeneity in the distribution of
volume fraction. The mesoscale force results from interactions at mesoscale level, and is not a
force representing interactions between a particle and the mixture which happens at the particle
scale.
In the next section we shall study the behavior of the closures terms, and then propose potential

closures in Section 4.

3. Numerical simulations and results

To examine the behavior of closure quantities we use numerical data from our simulation
(Zhang and VanderHeyden, 2001) of an experimental circulating fluidized bed (Van den Moortel
et al., 1998). The averaged equations used in the simulation, are essentially the same equations
used by Pan et al. (2000), which were obtained by Zhang and Prosperetti (1994, 1997) including
the effects of particle-fluid drag and particle-scale added-mass only.
The geometry of the device used by Van den Moortel et al. had a 20 cm
 20 cm cross-section

and was 200 cm in height. Particles in the experiment had mean diameter of 120 lm and a density
of 2400 kg/m3. In their experiments, the overall particle volume fraction was maintained at 3%
using solids flow loop control. The experiments of Van den Moortel et al. correspond to the so-
called ‘‘turbulent regime,’’ (Grace, 1986). The turbulent regime, for so-called Group A powders,
occurs for excess gas superficial velocities in the range of 0.5–2.0 m/s. Strictly speaking, the tur-
bulent regime does not exhibit circulation like the so-called ‘‘fast fluidization regime’’. Thus, there
appears to be some kind of discrepancy here. Nevertheless, Van den Moortel et al. do report
circulation from their experiments. This apparent discrepancy can be resolved by considering the
phenomena of particle entrainment from non-circulating fluid beds. As explained in Grace (1982),
there is a zone above a fluid bed, whose height is called the ‘‘transport disengagement height’’ or
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TDH, in which there can be significant particle entrainment. This zone is sometimes called the
freeboard region. Using the graphic correlation provided by Zenz and Weil (1958), we can esti-
mate the TDH to be about 3–4 m for the experiment of Van den Moortel, et al. for the case of a
superficial gas velocity of 1.1 m/s. Since Van den Moortel’s riser was only 2 m tall, we can presume
that there was considerable particle entrainment from their turbulent-regime fluidized bed. This,
then, would account for the observed circulation and resolve the apparent discrepancy mentioned
above.
The grid resolution used in our simulations was 0:645 cm
 0:645 cm
 1:29 cm. To maintain a

constant overall particle volume fraction as in the experiment, in our simulation at the beginning
of each time step, the particle inflow at the bottom is set to be the same as the particle outflow
from the top calculated at the end of previous time step. The simulations were carried to a sta-
tistically steady state and data were collected for a sufficiently long time to calculate the closure
terms identified above. As the first step toward understanding these new closure terms from the
second average, we examine one-dimensional closures. Consequently averages of the simulation
data were performed across horizontal sections of the fluidized bed.
Since the equations used in the numerical simulation were most accurate for dilute situations,

we only used the numerical simulation results from the computational cells in which the particle
volume fraction was less than 20% when evaluating closure models. At bottom of the fluidized
bed, particle pressure is used to prevent the particle volume fraction from going beyond the close
packing limit. In addition, to avoid effects of the outflow boundary condition, we also excluded
the data from the region close to the exit where the cross-section geometry was changed to em-
ulate the experimental riser duct outlet (Zhang and VanderHeyden, 2001).
Mesoscale structures were observed in the simulation as illustrated in Fig. 1 and good agree-

ment with experimental data was obtained as is shown in Fig. 2. As shown in Fig. 1, at the bottom
of the fluidized bed, the distribution of particle volume fraction is nearly uniform because of the
assumed uniform in-flow boundary conditions. Mesoscale structures are generated about 5 cm
from the bottom. At a height of about 50 cm transition from turbulent fluidized bed to freeboard
region occurs. Above this height, cluster–streamer type mesoscale structures are observed.
These flow transitions can be seen to correspond to the behavior of the mesoscale interaction

force fm. The vertical component of this force computed from the simulation is plotted against
height in Fig. 3. From the bottom of the column to a height of about 50 cm, the force diminishes
from 0 to a minimum value of about �250 dN/cm3, approximate location of the transition from
turbulent fluidized bed to freeboard region. We hypothesize that this corresponds to the evolution
of mesoscale structures from the bottom of the column. As we move up further, the force then
grows becoming positive reaching a value of about 150 dN/cm3 at a height of 160 cm. In the
bottom of the column, the force acts to decelerate the particles. Since acceleration process are
significant at the bottom of the column, we hypothesize that fm is dominated by an mesoscale
added-mass effect. The net effect is a retardation of the particle acceleration process. This will turn
out to be one of the most important observations of this study. Towards the top of the column,
the mesoscale force is positive and most likely is due to the drag on clusters–streamers like
structures. At this end of the column, acceleration is diminished and so, therefore, is the added-
mass component of the mesoscale interaction force.
With these hypothetical interpretations, we now proceed to explore some more quantitative

models for the exchange force terms.
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Fig. 2. Comparison between calculated particle mass fluxes and experimental results at different superficial gas ve-

locities. The aspect ratio Dx : Dy : Dz in these simulations is 1:1:2.

Fig. 1. Particle volume fraction contour on a mid-plane (y ¼ 10 cm).
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4. Possible models for the closures

We focus here on the new interaction force terms fm and hfid obtained from the second average.
Let us delay extensive discussion of potential closure models for the Reynolds stresses to future
work and first consider the behavior of fm. As noted in previous sections, the force fm can be
expected to be composed of an added-mass force and a drag force associated with mesoscale
structures. Also, as mentioned before, the force fm at lower elevations has a negative vertical
component which acts to resist the upward acceleration of particles. The force fm is in the same
direction of the relative velocity, hudid � hucic; therefore the force shown in Fig. 3 cannot be at-
tributed to drag alone. In fact, as mentioned above, it appears to be dominated by an added-mass
force component. At higher elevation, about 120 cm above the distributor, the vertical component
of the force fm becomes positive. At this point, the mesoscale drag appears to dominate over the
added-mass force to resist the falling of clusters–streamer like structures as shown in Fig. 1. In the
case of fluidized beds, the bottom portion has a higher particle volume fraction, and the added-
mass component of the mesoscale force fm is apparently more important than the drag compo-
nent. At the end of Section 2, we demonstrated that the added-mass component of �hhdfm can be
expressed in terms of relative acceleration between the mesoscale structure (bubble in the example)
and the surrounding emulsion. Since quantities associated with bubble or emulsion are not pri-
mary variables in the macroscopic equations, to have a closure relation for force fm we need to
relate the relative acceleration ae � ab to the relative acceleration between the disperse phase and
the continuous phase ad � ac. In a bubbling bed, we assume that the relative acceleration ad � ac is
caused by the interaction of bubbles and the surrounding emulsion and write

ad � ac ¼ Cfhb�hhdðae � abÞ; ð23Þ
where Cf is an O(1) proportionality coefficient, hb is the bubble volume fraction. The quantity �hhd is
present because it represents the coupling between the disperse phase and the emulsion. Using
(22), the added-mass component of �hhdfm can be written as

Fig. 3. Mesoscale force fm as a function of height. The superficial gas velocity is 1.1 m/s.
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�hhdfm ¼ �Caqmðad � acÞ; where Ca ¼
Cbqe
Cfqm

; ð24Þ

and qm ¼ �hhdqd þ �hhcqc is density of the mixture in the fluidized bed. We call Ca the generalized
added-mass coefficient. Added-mass coefficient for an inclusion in a fluid is usually of O(1) (0.5 for
a sphere). However the generalized added-mass coefficient Ca need not to be so. The emulsion
density qe outside a bubble can be significantly higher than the averaged mixture density qm,
therefore, the generalized added-mass coefficient can be well above unity. Although, Eq. (24) is
obtained for bubbling fluidized beds, the basic physics outlined here applies to more general cases.
In general the boundary of a mesoscale structure is not be well defined, and bubbles and emul-
sions can be realistically thought of as particle lean and rich regions. For this reason, (if the drag
component of �hhdfm can be neglected), we propose to model the added-mass component of �hhdfm
simply as

�hhdfm ¼ �Caqm
ohudid
ot



þ hudid � rhudid �

ohucic
ot

� hucic � rhucic
�
: ð25Þ

Ideally, the density used above should be the averaged density of the effective medium outside
the discrete mesoscale structures. To avoid the introduction, at this point, of a closure relation for
such a density, we assume it can be expressed proportional to the local average mixture density,
viz. Chqm. The coefficient of proportionality is then lumped in to the generalized added-mass
coefficient Ca as in (24). As mentioned above, this generalized added-mass coefficient can be large
compare to one. Using our numerical results from the lower portion (height less than 60 cm) of
the fluidized bed, we calculated the added-mass coefficient Ca for the case of superficial gas ve-
locity �hhchuci ¼ 1:1 m/s. The results are shown in Fig. 4. In the figure, the added-mass coefficient is
seen to increase with height, corresponding to the development of mesoscale structures. In general
the coefficient is expected to depend on the evolution of the mesoscale structures and therefore

Fig. 4. Added-mass coefficient. The superficial gas velocity is 1.1 m/s.
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should depend on the geometry and the local solid and gas velocities. This makes a general model
for the added-mass coefficient quite complicated and further research is clearly needed here.
In the upper region of the fluidized bed, the averaged particle volume fraction �hhd is small.

According to Fig. 5 the fluctuation h0
d and the stress difference rc � hrcim are small too. From

definition (20), it is easy to see that the force fm is also small and is less important than the added-
mass in lower portion of the fluidized bed. Furthermore, the drag component of fm is much
smaller that that due to particle-scale drag so we can, for practical purposes, model fm as, simply,
an added-mass term given by Eq. (25).
Although the mesoscale force fm is often small compared to the particle-scale drag force, it does

make a significant contribution to the momentum exchange in the fluidized bed where accelera-
tion is important. To see this, we eliminate the stress divergence rhrcim from the momentum Eqs.
(18) and (19) and then use (25) to find

qd 1

"
þ Ca 1

 
þ

�hhcqc
�hhdqd

!#
ohudid
ot



þ hudid � rhudid

�
� Caqd

"
þ 1

 
þ Ca �hhc

�hhd

!
qc

#


 ohucic
ot



þ hucic � rhudic

�

¼ 1
�hhd
r � �hhd qdhMdid

�h
þ qdMdm þ hrcollid

�i
� 1

�hhc
r � �hhdhLid
h

þ �hhcqc hMcic
�

þMcm

�i

þ 1
�hhc
hfid þ ðqd � qcÞg: ð26Þ

Now it is easy to see the effect of mesoscale added-mass in the fluidized bed. In the equation
above, the acceleration of the continuous phase is multiplied by Caqd þ ð1þ ðCa�hhc=�hhdÞÞqc, an
effective density, which is significantly larger than qc in the case of gas–solid flows. In the next

Fig. 5. Relation between standard deviation

ffiffiffiffiffi
h02
d

q
and hd.
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section we shall illustrate how the added-mass coefficient Ca affects the vertical profile of particle
volume fraction.
Now let us consider the closure of the term hfid, the averaged particle-scale interaction force.

The particle drag fd is calculated in the simulations as a function of relative velocity between the
two phases according to the classical expression for single-sphere drag.

fd ¼ � 3

4d
hcCdqgjud � ucjðud � ucÞ: ð27Þ

The drag coefficient Cd, due to White (1974), is calculated as

Cd ¼ C1 þ 24
Re

þ 6

1þ
ffiffiffiffiffiffi
Re

p ; Re ¼ jud � ucjd
mc

; ð28Þ

where mc is the kinematic viscosity of the continuous phase. In principle, the drag coefficient
should also be modeled as a function of solids volume fraction to reflect the effect of particle-fluid-
particle interactions. The well-known Richardson–Zaki model is an example. One of the purposes
of this paper is to study interactions of mesoscale structures without relying on particle–particle
interaction models, such as kinetic theory for granular flows. To be consistent, we elected to use
the simple form for the drag and not to introduce effects of particle-fluid-particle interactions. As
mentioned in our recently paper (Zhang and VanderHeyden, 2001), the error caused by neglecting
these interactions is small since the particle volume fraction is low in the most of the fluidized bed
under consideration. As stated in the last section, we only used the numerical data in the com-
putational cells in which particle volume fraction was less than 20% when evaluating closure
models. If a drag model accounting for the effects of particle concentration were used in the
calculation, the drag would have been larger. As a consequence of this, the decrease of the particle
volume concentration along the height of the bed would have been slower. However, the total
solid flux would not have been changed significantly since the solid flux out of the fluidized bed
was dominated by the upper region of the bed, where the particle concentration was low. Fur-
thermore, we expect that the mesoscale structures observed would still be present.
One would hope that after the second average the averaged particle drag hfid could be modeled

as a function of the relative velocity hudid � hucic. But simply replacing relative velocity ud � ud in
Eqs. (27) and (28) above by hudid � hucic, significantly overpredicts the averaged particle drag hfid
as shown in Fig. 6. If, instead, one uses hudid � hucid, the results are very close to the value found
from the numerical simulation. The physical explanation is that, on average, the continuous phase
velocity ‘‘seen’’ by particles is hucid instead of hucic. Unfortunately, the velocity hucid is not a
primary variable in the averaged equation system and has to be modeled. To better understand
the averaged behavior of hucid from our numerical results, let us define the relative velocity re-
duction coefficient Cr as

Cr ¼
huczid � huczic
hudzid � huczic

; ð29Þ

where subscript z stands for vertical (z) direction. (This coefficient will have to be generalized for
more complex, multi-dimensional situations. Nevertheless, we can learn a great deal from a one-
dimensional analysis.) In the case of uniform hd, the difference between hucid and hucic van-
ishes and so does Cr. Therefore, the quantity Cr is a measure of inhomogeneity in the fluidized
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bed. In Fig. 7, the quantity Cr is shown as a function of averaged particle volume fraction �hhd. The
figure shows that at zero particle volume fraction, the value of Cr is zero since, in that case, the
particle distribution is locally uniform. As can be seen, the value Cr increases rapidly over a very
short range of �hhd and then stays almost constant. We also note that the value of Cr should de-
crease to zero at the closed-packed volume fraction (0.6 in this case) since, in this limit, the dis-
tribution of the particle volume fraction hd must also be locally uniform. This effect, although not
shown in the figure, was in fact observed in our numerical results.

Fig. 7. Relative velocity reduction coefficient Cr.

Fig. 6. Averaged particle drag force as a function of height. The solid line is results from numerical simulation and the

dashed line is calculated using the gas velocity experienced by particles as in Eq. (31). The dot and dash line is calculated

using averaged relative velocity hudid � hucic as the relative velocity in (27). The superficial gas velocity is 1.1 m/s.
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With the above definition for Cr; the relative velocity felt by the particles is given

hudzid � huczid ¼ ð1� CrÞðhudzid � huczicÞ: ð30Þ
The averaged particle drag may then be modeled as

hfid ¼ � 3

4d
�hhcCdqgð1� CrÞ2jhudzid � huczicjðhudzid � huczicÞ; ð31Þ

where the drag coefficient Cd is calculated using the Reynolds number based on the averaged
relative velocity ð1� CrÞðhudzid � huczicÞ. The drag calculated using (31) is plotted in Fig. 6. Close
agreement between this model and the simulation results is seen in the figure.
As a cautionary note, the authors would like to remind readers, that the closures proposed in

this section are based on our numerical observations only. While we believe they are physically
correct, they need to be tested and compared with experimental data since they are obtained from
a fairly narrow range of conditions. We do expect, however, that they should extrapolate plau-
sibly beyond our present dataset.

5. Effect of mesoscale structure on vertical profile of particle volume fraction

The device we simulated in previous section is rather small compared to typical devices in
engineering practice. While the physics revealed in the study are expected to be valid in non-
homogeneous fluidized beds, especially in gas–solid fluidized beds, the actual values of the co-
efficients are expected to vary in different situations since mesoscale structures are expected to
depend, to some extent, on the boundary conditions and length scales of a given device. In this
section, we examine the sensitivity of the coefficients introduced in the previous section. We also
explore possible consequences of the mesoscale forces examined above in an industrial-scale de-
vice. We consider an example to see how the typically measured pressure gradient changes with
the parameters Ca and Cr. In the example, the particle volume fraction is set at 0.33 at the inlet, the
particle diameter is 75 lm, the solid flux is 135 kg/s/m2, and the superficial velocity of gas is 5.20
m/s. The particle material density is 1700 kg/m3 and gas is taken to be air at room temperature,
with a density of 1.205 kg/m3. These conditions are in the range appropriate for many industrial-
scale fluidized beds. We consider a statistically steady one-dimensional fluidized bed. From the
continuity Eqs. (7) and (8), we have

�hhchucic ¼ Qc; �hhdhudid ¼ Qd; ð32Þ

where Qc and Qd are superficial velocities of gas and solid. Given our asumptions, they are
constants. Upon neglecting the Reynolds stresses, the collisional stresses hrcolli and the stress hLid,
Eq. (26) becomes

� qd 1

"(
þ Ca 1

 
þ

�hhcqc
�hhdqd

!#
Q2d
�hh3d

þ Caqd

"
þ 1

 
þ Ca�hhc

�hhd

!
qc

#
Q2c
�hh3c

)
d�hhd
dx

¼ 1
�hhc
hfid þ ðqd � qcÞg: ð33Þ
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To illustrate the effects of the mesoscale added-mass and the drag reduction due to mesoscale
structures, we examine solutions of (33) using constant values for the coefficients Ca and Cr. The
drag is calculated using (31). Fig. 8 shows the effect of the added-mass coefficient on the pressure
gradient and particle volume fraction distribution along the height of the fluidized bed. In the
calculation, the coefficient Cr is set to 0.9. The effects of varying the value for Cr are shown on Fig.
9. Both figures show the qualitative importance of the effects of mesoscale added-mass and re-
duction of relative velocity due to mesoscale structures. Given this demonstration of the potential
importance of these terms, more work should be performed to improve our understanding of
these effects and in particular how mesoscale effects evolve from uniform conditions.

6. Conclusion

Based on numerical results obtained by high-resolution three-dimensional simulations of a
circulating fluidized bed, it is found that the added-mass of mesoscale structures and drag re-

Fig. 8. Vertical distribution of pressure gradient and averaged partical volume fraction calculated using different

added-mass coefficient Ca. The relative velocity reduction coefficient Cr is fixed at 0.9 in all calculations.

Fig. 9. Vertical distribution of pressure gradient and averaged partical volume fraction calculated using different rel-

ative velocity reduction coefficient Cr. The added-mass coefficient Ca is fixed at 4.0 in all calculations.
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duction due to mesoscale structures are important. A set of macroscopic equations containing
terms representing these mesoscale effects is obtained by extending the ensemble phase averaging
method developed by Zhang and Prosperetti (1994, 1997) to include a second average.
Typically, the added-mass of particles in a gas–solid fluidized bed is negligible because of small

gas density. However, the added-mass of mesoscale structures is important, since the density
associated with the mesoscale added-mass is proportional to the mixture density instead of the
density of the gas phase.
Also, inside a particle rich region, particles experience less relative velocity than indicated by

the macroscopic relative velocity. Therefore, the averaged drag between the two phases is smaller
than the drag calculated using the macroscopic averaged relative velocity. Possible closure models
for the mesoscale added-mass and relative velocity reduction were introduced along with new
coefficients Ca which characterizes the effective added-mass for mesoscale structures and Cr which
characterizes relative velocity reduction.
Possible effects of the new mesoscale force terms in the macroscopic equations for two-phases

flow are illustrated by computing the vertical profiles of pressure gradient and particle volume
fraction in a fluidized bed using different values of the added-mass coefficient Ca and the relative
velocity reduction coefficient Cr. The qualitative importance of these terms was demonstrated.
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